>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary

Ceiling >. 0 0 0 Larger Of (Max)

>.y gives the ceiling of y , that is, the smallest integer greater than or equal to y . Thus:
   >. 4.6 4 _4 _4.6
5 4 _4 _4
The implied comparison with integers is tolerant, as discussed under Equal (=), and is controlled by >.!.t . See Floor (<.) and McDonnell [10] for complex arguments.
 
  x>.y is the larger of x and y . For example:
   3>.4 _4
4 3

   >./7 8 5 9 2
9
    
   >./\7 8 5 9 2
7 8 8 9 9

The comparison x = >. x determines whether x is an integer. Thus:
   Integer_test=: ] = >.      See the definition of fork in Section II F.
   Integer_test 3 3.14 _5
1 0 1

   f=: = >.                   The same function may be defined by a hook.
   f 3 3.14 _5
1 0 1
The ceiling >. y is equivalent to -<.-y . In other words, it is the dual of floor with respect to (that is, under) arithmetic negation: >. « <.&.- and <. « >.&.- . For example:
   (<.&.- ; >.) 4.6 4 _4 _4.6
+---------+---------+
|5 4 _4 _4|5 4 _4 _4|
+---------+---------+



>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary