Factorial | ! 0 0 0 | Out Of (Combinations) |
For a non-negative integer argument y, the definition
is */>:i.y . In general, !y
is G(1+y) (the gamma function).
Thus:(*/1 2 3 4 5) , (!5) 120 120 ]x=: 2 %~ 3 -~ i. 2 4 _1.5 _1 _0.5 0 0.5 1 1.5 2 !x _3.54491 _ 1.77245 1 0.886227 1 1.32934 2 ]fi=:!^:_1(24 25 2.1 9876) 4 4.02705 2.05229 7.33019 ! fi 24 25 2.1 9876 |
For non-negative arguments x!y is the number of ways
that x things can be chosen out of y .
More generally, x!y is (!y)%(!x)*(!y-x) . Thus:3!5 10 (!5)%(!3)*(!5-3) 10 1j2 ! 3.5 8.64269j16.9189 ]y=:2&!^:_1 (45 4.1 30 123) 10 3.40689 8.26209 16.1924 2 ! y 45 4.1 30 123 ]x=:!&10^:_1 (2.5 45) 0.3433618 2 x ! 10 2.5 45 |
h=: 0,i=: i.5 [ j=: -1+i.5 [ k=: 5#1 tables=: (,.h);(i,i!/i);(j,i!/j);(k,i(+/\^:)k) format=: ({. ,:&< }.)@":&.> format tables +---+-----------+-------------------+--------------+ |+-+|+---------+|+-----------------+|+------------+| ||0|||0 1 2 3 4|||_1 _2 _3 _4 _5|||1 1 1 1 1|| |+-+|+---------+|+-----------------+|+------------+| ||0|||1 1 1 1 1||| 1 1 1 1 1|||1 1 1 1 1|| ||1|||0 1 2 3 4|||_1 _2 _3 _4 _5|||1 2 3 4 5|| ||2|||0 0 1 3 6||| 1 3 6 10 15|||1 3 6 10 15|| ||3|||0 0 0 1 4|||_1 _4 _10 _20 _35|||1 4 10 20 35|| ||4|||0 0 0 0 1||| 1 5 15 35 70|||1 5 15 35 70|| |+-+|+---------+|+-----------------+|+------------+| +---+-----------+-------------------+--------------+Figurate numbers of order zero are all ones; those of higher orders result from successive applications of subtotals (that is, sums over prefixes, or +/\). Those of order two are the triangular numbers, resulting from subtotals over the integers beginning with one.