>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary

Boolean m b.  _ 0 0  

If f is a dyadic boolean function and d=: 0 1, then d f/ d (or f/~d) is its complete table. For example the tables for or, nor, and, and not-and (followed by their ravels) appear as follows:
   (+./~ ; +:/~ ; *./~ ; *:/~) d=: 0 1
+---+---+---+---+
|0 1|1 0|0 0|1 1|
|1 1|0 0|0 1|1 0|
+---+---+---+---+

   ,&.> (+./~ ; +:/~ ; *./~ ; *:/~) d
+-------+-------+-------+-------+
|0 1 1 1|1 0 0 0|0 0 0 1|1 1 1 0|
+-------+-------+-------+-------+
If ordered by their ravels, each of the sixteen possible boolean dyads can be characterized by its index k; the phrase k b. produces the corresponding function. Moreover, negative indexing may be used. For example:
   (7 b./~;8 b./~;1 b./~;14 b./~;_2 b./~) d
+---+---+---+---+---+
|0 1|1 0|0 0|1 1|1 1|
|1 1|0 0|0 1|1 0|1 0|
+---+---+---+---+---+
The adverb b. also applies to array arguments. For example:
   (<"2) 2 0 1 |: 7 8 1 15 b./~ d
+---+---+---+---+
|0 1|1 0|0 0|1 1|
|1 1|0 0|0 1|1 1|
+---+---+---+---+
The monad (as in m b. y) is equivalent to a zero left argument (as in 0 m b. y).
 




>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary