>>
<<
Ndx
Usr
Pri
Phr
Dic
Rel
Voc
!:
wd
Help
Dictionary
Taylor Coefficient |
u t. 0 0 0 |
|
u t. y is the yth coefficient in the Taylor
series approximation to the function u .
The domain of the adverb t. is the same as the left
domain of the derivative D. . See the case m t. .
|
|
x u t.y is the product of (x^y) and u t. y .
|
For example:
f=: 1 2 1&p. [. g=: 1 3 3 1&p. [. x=: 10%~i=: i.8
]c=: (f*g) t. i
1 5 10 10 5 1 0 0
6.2 ":(c p. x),:(f*g) x
1.00 1.61 2.49 3.71 5.38 7.59 10.49 14.20
1.00 1.61 2.49 3.71 5.38 7.59 10.49 14.20
(c p. x)=(f*g) x
1 1 1 1 1 1 1 1
]d=: f@g t. i
4 12 21 22 15 6 1 0
(d p. x)=(f g x)
1 1 1 1 1 1 1 1
sin=: 1&o. [. cos=: 2&o.
8.4":t=: (^ t. i),(sin t. i),:(cos t. i)
1.0000 1.0000 0.5000 0.1667 0.0417 0.0083 0.0014 0.0002
0.0000 1.0000 0.0000 _0.1667 0.0000 0.0083 0.0000 _0.0002
1.0000 0.0000 _0.5000 0.0000 0.0417 0.0000 _0.0014 0.0000
* t
1 1 1 1 1 1 1 1
0 1 0 _1 0 1 0 _1
1 0 _1 0 1 0 _1 0
((sin*sin)+(cos*cos)) t. i
1 0 0 0 _2.71051e_20 0 0 0
rf=: n%d [. n=: 0 1&p. [. d=: 1 _1 _1&p.
]fibonacci=: rf t. i. 20
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
2 +/\ fibonacci
1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765
(% -. - *:) t. i.20
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
>>
<<
Ndx
Usr
Pri
Phr
Dic
Rel
Voc
!:
wd
Help
Dictionary