>>
<<
Ndx
Usr
Pri
Phr
Dic
Rel
Voc
!:
wd
Help
Dictionary
19. Symbolic Functions
For any function, a corresponding symbolic function
can be defined to display the expression rather than evaluate it.
For example:
minus=: [ , '-'"_ , ]
'a' minus 'b'
a-b
list=: 'abcd'
table=: 4 4$'ABCDEFGHIJKLMNOP'
minus/list
a-b-c-d
(minus/\list);('01'minus"0/list);(minus//.table);table
+-------+---+-------+----+
|a |0-a|A |ABCD|
|a-b |0-b|B-E |EFGH|
|a-b-c |0-c|C-F-I |IJKL|
|a-b-c-d|0-d|D-G-J-M|MNOP|
| | |H-K-N | |
| |1-a|L-O | |
| |1-b|P | |
| |1-c| | |
| |1-d| | |
+-------+---+-------+----+
(,.list)=: 4 3 2 1
(". minus/\list) ,: (-/\4 3 2 1)
4 1 3 2
4 1 3 2
3 (minus/\ ; minus/\.) 'abcdefg'
+-----+-------+
|a-b-c|d-e-f-g|
|b-c-d|a-e-f-g|
|c-d-e|a-b-f-g|
|d-e-f|a-b-c-g|
|e-f-g|a-b-c-d|
+-----+-------+
>>
<<
Ndx
Usr
Pri
Phr
Dic
Rel
Voc
!:
wd
Help
Dictionary