>>
<<
Ndx
Usr
Pri
Phr
Dic
Rel
Voc
!:
wd
Help
Dictionary
25. Polynomials in Terms of Roots
The product */y-r is called a polynomial in terms
of the roots r, because it can
also be expressed as a polynomial applied to the
argument y, and because r is the list
of roots or zeros of the resulting function. For example:
*/y-r [ y=: 7 [ r=: 2 3 5 [ x=: 7 6 5 4 3 2
40
pp=: +//.@(*/)
c=: pp/monomials=: (- ,. 1:) r
cfr=: [: pp/ - ,. 1: Coefficients from roots
pir=: */@(]-[)"1 0 Polynomial in terms of roots
,.&.>(r;monomials;c;(cfr r);(c&p. y);(r pir x))
+-+----+---+---+--+--+
|2|_2 1|_30|_30|40|40|
|3|_3 1| 31| 31| |12|
|5|_5 1|_10|_10| | 0|
| | | 1| 1| |_2|
| | | | | | 0|
| | | | | | 0|
+-+----+---+---+--+--+
Since the last (highest order) coefficient produced by cfr
is necessarily 1, the function pir cannot produce a
general polynomial, but it can if provided with a multiplier.
We therefore re-define cfr and pir to apply
to a boxed list of multiplier and roots as follows:
CFR=: (* cfr)&>/
PIR=: CFR@[ p. ]
CFR 3;r
_90 93 _30 3
(3;r) PIR x
120 36 0 _6 0 0
We now illustrate the use of a polynomial in approximation:
]ce=: ^ t. i. 7 First seven terms of Taylor series for exponential
1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889
(^ - ce&p.) _1 _0.5 0 0.5 1 Comparison with exponential
_0.000176114 _1.45834e_6 0 1.65264e_6 0.000226273
pD ce The exponential function equals its own derivative
1 1 0.5 0.166667 0.0416667 0.00833333
>>
<<
Ndx
Usr
Pri
Phr
Dic
Rel
Voc
!:
wd
Help
Dictionary