>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Phrases

Complex Numbers

m0=: cnj=: + Conjugate
m1=: mag=: | Magnitude
m2=: %:@(cnj*]) "
m3=: rai=: +. Real and imaginary parts
m4=: maa=: *. Magnitude and angle
m5=: irai=: rai^:_1 Inverse rai
m6=: imaa=: maa^:_1 Inverse maa
m7=: rou=: [:^ 0j2p1&% * i. Roots of unity
m8=: rpg=: rai@rou Regular polygon
d9=: zero=: ] * 10&^@-@[ < | Zero any real y less than 10^-x in mag
m10=: z=:({.,{:*1e_6"_<%~/@:|)&.rai Zero imaginary if relatively small
m11=: (1e_10&$:) : (j./"1@((] *
       (<:|)) +.))
Clean y

The function z may be used to zero any imaginary part that is relatively small compared to the corresponding real part. For example:

   (] ,: z) a=:3+j.10^-2*i. 5
3j1 3j0.01 3j0.0001 3j1e_6 3j1e_8
3j1 3j0.01 3j0.0001      3      3

   z a
3j1 3j0.01 3j0.0001 3 3

Complex numbers can be scaled by multiplication by a real number, and shifted and rotated by addition and multiplication by complex numbers. For example:

   ]a=: rou 3	Third roots of unity
1 _0.5j0.866025 _0.5j_0.866025

   |a	Lie on the unit circle
1 1 1

   1ad30	Complex of mag 1 and angle of 30 degrees
0.866025j0.5

   6&zero@rai&.> (] ; 3j4&+ ; 1ad30&* ; 2ad60&*) a
+---------------------------------------------------+
¦   1        0¦  4       4¦ 0.866025 0.5¦ 1  1.73205¦
¦ 0.5 0.866025¦2.5 4.86603¦_0.866025 0.5¦_2        0¦
¦_0.5 0.866025¦2.5 3.13397¦        0  _1¦ 1 _1.73205¦
+---------------------------------------------------+
  Coordinates of	Shift by 3,4	Rotate by	Rotate by
  triangle 	30 degrees	60 degrees

>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Phrases