We begin with some simple functions (Length, Area, Volume) of various figures (rectangle, box, circle, cone, sphere, pyramid) applied to a length or list of lengths. For example:
m0=: Ar=: */ | Area of rectangle |
m1=: Ab=: 2: * [:+/ ] *1&|. | Area of box |
m2=: Vb=: */ | Volume of box |
m3=: Lci=: 2: * o. | Length (circumference) of circle (radius) |
m4=: Aci=: [:o. ] ^ 2: | Area of circle (r) |
d5=: Aco=: o.@* | Area of cone, excluding base (h r) |
d6=: Vco=: 1r3p1"_ * ] * * | Volume of cone (h r) |
m7=: As=: 4p1"_ * ] ^ 2: | Area of sphere (r) |
m8=: Vs=: 4r3p1"_ * ] ^ 3: | Volume of sphere (r) |
m9=: L=: +/&.(*:"_)"1 | Length of a vector |
d10=: Lp=: [: L [ , [: L [: -: ] | Length of edges of pyramid (h w,l) |
d11=: Ap=: [:+/ ]* [:L"1 [,"0-:@] | Area of pyramid, excluding base (h w,l) |
d12=: Vp=: 1r3"_ * */@, | Volume of pyramid |
m13=: sp=: -:@(+/) | Semi-perimeter |
m14=: h=: [: %: [: */ sp - 0: , ] | Heron's formula for area of triangle |
For example: |
h 3 4 5
6
h 51 52 53
1170
h 2 2 2
1.73205
In treating coordinate geometry we will use a list of n elements to represent a point in n-space, and an m by n table to represent a polygon of m vertices. For example: |
p=: 3 1 [ q=: 4 1 [ r=: 5 9 Three points
T=: p,q,:r A triangle
L=: +/&.(*:"_)"1 Length function
L p
3.16228
u=: 1&|. Rotate up
D=: u-] Displacements
,.&.>(];u;D;L@D)T3 Displacements and lengths (of sides)
+---------------------+
¦3 1¦4 1¦ 1 0¦ 1¦
¦4 1¦5 9¦ 1 8¦8.06226¦
¦5 9¦3 1¦_2 _8¦8.24621¦
+---------------------+
line=: 3 1 4,:1 5 9 A line in 3-space
(];-/;L@(-/);L) line Line, disp, length, distances to ends
+------------------------------------+
¦3 1 4¦2 _4 _5¦6.7082¦5.09902 10.3441¦
¦1 5 9¦ ¦ ¦ ¦
+------------------------------------+
T3=: ?.3 3$10 Random triangle in 3-space
,.&.>(];u;D;L@D) T3
+----------------------------+
¦1 7 4¦5 2 0¦ 4 _5 _4¦7.54983¦
¦5 2 0¦6 6 9¦ 1 4 9¦9.89949¦
¦6 6 9¦1 7 4¦_5 1 _5¦7.14143¦
+----------------------------+
m15 =: L=: +/&.(*:"_)"1 | Length |
m16=: D=: 1&|.-] | Displacement |
m17=: LS=: L"1@D | Lengths of sides |
m18=: S=: 1&o.@(*&1r180p1) | Sine in degrees |
m19=: C=: 2&o.@(*&1r180p1) | Cosine in degrees |
m20=: r=: (C,S),:(-@S,C) | 2-dim rotation matrix in degrees |
m21=: b=: <"1@(,"0/~) | Table of boxed index pairs: do i 0 2 |
d22=: R=: (r@])`(b@[)`(=@i.@3:)} | 3-dim rm: From axis 0 to 2 is 0 2 R a |
d23=: mp=: +/ . * | Matrix product |
m24=: R3=: (2 0"_ R 0&{)mp(1 2"_ R
1&{)mp(0 1"_ R 2&{) | R3 p,q,r is p-rotate from axis 2 to 1 on q-r from 1 to 2 on r-r from 0 to 1 |
m25=: Det=: -/ . * | Determinant |
m26=: Area=: [:Det ] ,. %@!@{:@$ | Area of triangle |
m27=: Vol=: Area f. | Volume of simplex in n-space (fixed) |
d28=: dsplitby=: ~:/@:*@:Vol@: (,"1 2) | Are points pairs (2 by n matrix) x separated by n by n simplex y? |
m29=: Area2=: [: -: [: +/ 2: Det\ ] | Area of polygon |
Area yields the area of a triangle expressed as a 3 by 2 list of x-y coordinates: |
TT
3 3
6 5
2 7
Area TT
7
Area2 also yields the area of a triangle, expressed by a similar table, but with the top row repeated at the bottom: |
TT2
3 3
6 5
2 7
3 3
Area2 TT2
7
It is more general, however, and will yield the area of arbitrary polygons: |
Polygon
7 2
10 5
6 8
3 6
4 3
7 2
Area2 Polygon
24.5
|