>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Phrases

Parity And Symmetry

Parity and symmetry each refer to any one of several related notions, including:

Parity

  1. Integers - odd or even
  2. Permutations - odd if equivalent to an odd number of transpositions of pairs; even otherwise
  3. A function - odd if negation of its argument negates its result; even if the result is unchanged; or neither

Symmetry and skew-symmetry

  1. A matrix is symmetric if equal to its transpose; skew if equal to the negation of its transpose; or neither
  2. function is symmetric if it is invariant under permutations of its argument
  3. A function f is symmetric under g if f&.g is equivalent to f; is skew if it is equivalent to -@f; or neither. Item c of parity concerns symmetry under -

Symmetric and skew-symmetric parts

Each has the specified property, and their sum equals the function from which they are derived. For example, sinh and cosh are the odd and even parts of the exponential under negation.

In classifying any entity for parity or symmetry, we will give the result _1 for the odd or skew case, 1 for the even or symmetric case, and 0 for neither.

m0=: Isodd=: 2&| Test if y is an odd integer
m1=: Iseven=: -.@Isodd Test if y is an even integer
m2=: Isperm=: -: /:@/: Test if y is a permutation vector
a3=: 1 : 'x. -: x.@(?@!@#A.])' Necessary condition for symmetry of fn.
m4=: m2*_1:^>/~ ~:/@,@:* </~@i.@# Classify argument as a permutation
m5=: L=: >/~ Left, centre, right limbs of the fork
m6=: C=: ~:/@,@:* evaluated in m4. See their use below
m7=: R=: </~@i.@# to demonstrate design of its definition
m8=: m2*_1:^+/@(<:@#@>@(C.@~.)) Parity of permutation from cycle lengths
m9=: -/@(|:-:"2],:-) Classify matrix (skew, neither, sym)

The symmetry of a function may be tested (but not guaranteed) by the adverb a3 :

   +/a3 
+/ -: +/@(?@!@# A. ])

   (+/a3,-/a3,*/a3,>./a3,/:~a3) 3 1 4 2 
1 0 1 1 1		Sum, product over, max over, and grade are 
	        	symmetric, but the alternating sum is not.

Phrases may be analyzed by isolating and executing phrases that occur within them. Consider, for example, phrases m4-7:

   p6=: (i.@! A. i.) 3
   n6=: 3 3 3#:i.6 
   p6 ; (,. m4"1 p6) ; n6 ; (,. m4"1 n6)
+----------------+
¦0 1 2¦ 1¦0 0 0¦0¦
¦0 2 1¦_1¦0 0 1¦0¦
¦1 0 2¦_1¦0 0 2¦0¦
¦1 2 0¦ 1¦0 1 0¦0¦
¦2 0 1¦ 1¦0 1 1¦0¦
¦2 1 0¦_1¦0 1 2¦1¦
+----------------+

 
   perm=: 3 1 4 2 0 
   (L;R;(L*R);(L C R)) perm
+-------------------------------+
¦0 1 0 1 1¦0 1 1 1 1¦0 1 0 1 1¦1¦
¦0 0 0 0 1¦0 0 1 1 1¦0 0 0 0 1¦ ¦
¦1 1 0 1 1¦0 0 0 1 1¦0 0 0 1 1¦ ¦
¦0 1 0 0 1¦0 0 0 0 1¦0 0 0 0 1¦ ¦
¦0 0 0 0 0¦0 0 0 0 0¦0 0 0 0 0¦ ¦
+-------------------------------+

These panels show that L compares every pair of elements of the argument for precedence (to see which must be moved over which), and the upper triangle provided by R masks out double counting.

Used with various functions such as negate and transpose, the conjunctions .: and .. yield adverbs that produce odd and even parts of functions to which they are applied:

a10=: skn=: .:- Skew part with respect to negate
a11=: syn=: ..- Symmetric "
a12=: skt=: .:|: Skew part with respect to transpose
a13=: syt=: ..|: Symmetric "
m14=: sinh=: 5&o. Hyperbolic sine
m15=: cosh=: 6&o. Hyperbolic cosine
n16=: m=: 3 1 4,2 0 5,:1 4 1 A 3-by-3 matrix
d17=: ip=: +/ . * Inner (matrix) product
m18=: L=: m&ip A linear function
   (^skn,sinh,^syn,cosh,: ^ = ^skn + ^syn) a=:i.6
0  1.1752 3.62686 10.0179 27.2899 74.2032
0  1.1752 3.62686 10.0179 27.2899 74.2032
1 1.54308  3.7622 10.0677 27.3082 74.2099
1 1.54308  3.7622 10.0677 27.3082 74.2099
1       1       1       1       1       1

      ]y=: (^t. , ^skn t. , sinh t. , ^syn t. ,: cosh t.) a
1 1 0.5 0.1666667 0.04166667 0.008333333
0 1   0 0.1666667          0 0.008333333
0 1   0 0.1666667          0 0.008333333
1 0 0.5         0 0.04166667           0
1 0 0.5         0 0.04166667           0

 
   % y
1 1 2 6 24 120
_ 1 _ 6  _ 120
_ 1 _ 6  _ 120
1 _ 2 _ 24   _
1 _ 2 _ 24   _

   !^:_1 % y
0 0 2 3 4 5
_ 0 _ 3 _ 5
_ 0 _ 3 _ 5
0 _ 2 _ 4 _
0 _ 2 _ 4 _

   (L;L skt;L syt;L skt+L syt) m
+----------------------------------------------+
¦15 19 21¦_5.5 _3.5   5¦20.5 22.5   16¦15 19 21¦
¦11 22 13¦_7.5 _3.5   3¦18.5 25.5   10¦11 22 13¦
¦12  5 25¦ 0.5   _1 3.5¦11.5    6 21.5¦12  5 25¦
+----------------------------------------------+

Skew arrays may be used in expressions for orthogonality, as in the vector cross product (orthogonal to the plane defined by its arguments), the curl (orthogonal to the matrix of partial derivatives), and the determinant. We will illustrate this by the completely skew tensor (cst), whose sign is reversed by the transposition of any pair of axes.

m19=: cst=: m4"1@(#: i.)@:(#~) Complete skew tensor; m4 tests for perm
d20=: cross1=: [ip cst@#@[ip] Generalized cross-product
d21=: cross2=: ((_1: |.[)*(1:
      |.]))-((1: |.[)*(_1: |. ]))
Conventional cross product (not valid for dimension greater than 3)
m22=: det1=: +/@,@(*// * cst@#) Determinant in terms of cst
m23=: det2=: -/ . * Determinant
m24=: length=: m24=: +/&.(*:"_)"1 Length of vector
m25=: arcsin=: _1&o. Arcsine
m26=: angle=:arcsin@(length@ cross1
      % length@[*length@])
Angle between two vectors
m27=: dfr=: 180p_1&* Degrees from radians
   v=: a cross1 b [a=: 3 1 4 [ b=: 2 0 5
   v;(v ip a,.b);(a angle b);(dfr 0 0 1 angle 0 1 0)
+-----------------------+
�_5 7 2�0 0�0.3274544�90�
+-----------------------+

   (cst@#;*//;(cst@#**//);+/@,@(cst@#**//);det1) m
+----------------------------------+
� 0  0  0� 6 24  6�0   0  0�_25�_25�
� 0  0  1� 0  0  0�0   0  0�   �   �
� 0 _1  0�15 60 15�0 _60  0�   �   �
�        �        �        �   �   �
� 0  0 _1� 2  8  2�0   0 _2�   �   �
� 0  0  0� 0  0  0�0   0  0�   �   �
� 1  0  0� 5 20  5�5   0  0�   �   �
�        �        �        �   �   �
� 0  1  0� 8 32  8�0  32  0�   �   �
�_1  0  0� 0  0  0�0   0  0�   �   �
� 0  0  0�20 80 20�0   0  0�   �   �
+----------------------------------+

>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Phrases