>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary

Power u^:n  _ _ _  

Two cases occur: a numeric integer n, and a gerund n .
 

Numeric case. The verb u (or x&u) is applied n times. For example:
   (] ; +/\ ; +/\^:2 ; +/\^:0 1 2 3 _1 _2 _3 _4) 1 2 3 4 5
+---------+-----------+------------+-------------+
|1 2 3 4 5|1 3 6 10 15|1 4 10 20 35|1  2  3  4  5|
|         |           |            |1  3  6 10 15|
|         |           |            |1  4 10 20 35|
|         |           |            |1  5 15 35 70|
|         |           |            |1  1  1  1  1|
|         |           |            |1  0  0  0  0|
|         |           |            |1 _1  0  0  0|
|         |           |            |1 _2  1  0  0|
+---------+-----------+------------+-------------+
An infinite power n produces the limit of the application of u . For example, if x=:2 and y=:1, then x o.^:_ y is 0.73908, the solution of the equation y=Cos y . If n is negative, the obverse u^:_1 is applied |n times. The obverse (which is normally the inverse) is specified for six cases:

1.  The self-inverse functions + - -. % %. |. |: /: [ ] C. p.

2.  The pairs in the following lists:
  <  <:  +.       +:  +~  *.       *:  *~  ^   ,:  ,~
  >  >:  j./"1"_  -:  -:  r./"1"_  %:  %:  ^.  {.  <.@-:@# {. ]

  ;:              #.  ".  ;~    3!:1  3!:3  p:     q:
  ;@(,&' '&.>"1)  #:  ":  >@{.  3!:2  3!:2  pi(n)  */

  \:     o.       j.     r.
  /:@|.  %&(o.1)  %&0j1  %&0j1@^.
3.  Obviously invertible bonded dyads such as -&3 and 10&^. and 1 0 2&|: and 3&|. and 1&o. and a.&i. as well as u@v and u&v if u and v are invertible.

4.  Monads of the form v/\ and v/\. where v is one of + * - % = ~:

5.  Obverses specified by the conjunction :.

6.  The following cases merit special mention:

  p:^:_1 n gives the number of primes less than n, denoted by p(n) in math
 
  q:^:_1 is */
 
  #^:_1 with a boolean left argument is "Expand" (whose fill atom f can be specified by fit, b&#^:_1!.f)
 
  a&#.^:_1 produces the base-a representation
 
  !^:_1 and !&n^:_1 and !&n&^:_1 produce the appropriate results
 

Gerund case. (Compare with the gerund case of the merge adverb })

   x u^:(v0`v1`v2)y   «   (x v0 y)u^:(x v1 y) (x v2 y)
   x u^:(   v1`v2)y   «   x u^:([` v1`v2) y
     u^:(   v1`v2)y   «   u^:(v1 y) (v2 y)



>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary