>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary

Prefix m\  u\  _ 0 _ Infix

u\y has #y items resulting from applying u to each of the prefixes k{.y , for k from 1 to #y .

m\y applies successive verbs from the gerund m to the prefixes of y, extending m cyclically as required.
 
  If x>:0 , the items of x u\ y result from applying u to each infix of length x . If x<0 , u is applied to non-overlapping infixes of length |x , including any final shard.

x m\ y applies successive verbs from the gerund m to the infixes of y , extending m cyclically as required.
 

   +/\a=: 1 2 4 8 16                     Subtotals, or partial sums
1 3 7 15 31

   */\a                                  Partial products
1 2 8 64 1024

   <\a
+-+---+-----+-------+----------+
|1|1 2|1 2 4|1 2 4 8|1 2 4 8 16|
+-+---+-----+-------+----------+

   <\i.3 4
+-------+-------+---------+
|0 1 2 3|0 1 2 3|0 1  2  3|
|       |4 5 6 7|4 5  6  7|
|       |       |8 9 10 11|
+-------+-------+---------+

   (+/\^:_1 +/\ a) ,: */\^:_1 a
1 2 4 8 16
1 2 2 2  2
The following examples illustrate the use of the dyad infix:
   ((2: -/\ ]) ; (2: -~/\ ])) a          Backward and forward differences 
+-----------+-------+
|_1 _2 _4 _8|1 2 4 8|
+-----------+-------+

   ((3: <\ ]) ,&< (_3: <\ ])) 'abcdefgh'
+-------------------------+------------+
|+---+---+---+---+---+---+|+---+---+--+|
||abc|bcd|cde|def|efg|fgh|||abc|def|gh||
|+---+---+---+---+---+---+|+---+---+--+|
+-------------------------+------------+



>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary