>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary

Hypergeometric m H. n  0 0 0

The conjunction H. applies to two numeric lists to produce a monad which is the hypergeometric function defined in Section 15 of Abramowitz and Stegun [13]; it is the limit of the dyadic case, whose left argument restricts the number of terms of the approximating series.

As discussed in Iverson [14], the conjunction is defined as follows:
   rf=: 1 : '(,x.)"_ ^!.1/ i.@['         Rising factorial
   L1=: 2 : 'x.rf %&(*/) y.rf'
   L2=: (i.@[ ^~ ]) % (!@i.@[)
   H=: L1 (+/ . *) L2

 

For example:
   'a b'=: 2 3 5; 6 5

   a L1 b
(2 3 5"_ ^!.1/ i.@[) %&(*/) 6 5"_ ^!.1/ i.@[

   t=: 4 [ z=: 7

   t a L1 b z
1 1 1.71429 4.28571

   t (a H b , a H. b) z
295 295

   f=: 1 H. 1

   8 f i. 6
1 2.71825 7.38095 19.8464 51.8063 128.619

   f i. 6
1 2.71828 7.38906 20.0855 54.5982 148.413

   ^ i. 6
1 2.71828 7.38906 20.0855 54.5982 148.413



>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Dictionary