>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Phrases

Ambivalent Functions

The phrase h=: f : g defines h as the function whose monadic case is f and whose dyadic case is g. The components f and g may be functions already defined and named, or they may be tacit or explicit phrases. Moreover, either (but not both) may be defined in terms of the other by using $: for self-reference in a tacit definition.

v0=: 10&^. : ^. Base 10 log for monadic case
v1=: 10&$: : ^. Same using self-reference to dyad
v2=: 10&^. :($:*^.@(10"0)%^.@[) Same using self-reference to monad
d3=: res=: [: : | Domain of monad is empty (dyadic only)
m4=: abs=: | : [: Domain of dyad is empty (monadic only)

>>  <<  Ndx  Usr  Pri  Phr  Dic  Rel  Voc  !:  wd  Help  Phrases