Fixing an argument of a verb produces a monad. Some verbs so produced are sufficiently important to justify being denoted by a primitive symbol, and the following table often shows the corresponding primitive together with the English definition. The conjunction & (often called with) is used to bond an argument to a verb.
m0 =: 1&+ | Increment >: |
m1 =: +&1 | " |
m2 =: _1&+ | Decrement <: |
m3 =: -&1 | " |
m4 =: 1&- | Not -. (logical and prob complement) |
m5 =: 1&~: | " |
m6 =: 0&= | " |
m7 =: 0&- | Negate - (arithmetic) |
m8 =: _1&* | " |
m9 =: *&_1 | " |
m10=: 2&* | Double +: |
m11=: *&2 | " |
m12=: 3&* | Triple |
m13=: *&3 | " |
m14=: 0j1&* | j. (Multiply by √-1) |
m15=: ^@j. | r.(Complex # on unit circle at y radians) |
m16=: 1p1&* | * times o. |
m17=: 0.5&* | Halve -: |
m18=: *&0.5 | " |
m19=: %&2 | " |
m20=: 1&% | Reciprocal % |
m21=: ^&_1 | " |
m22=: ^&2 | Square *: |
m23=: ^&33 | Cube |
m24=: \^&0.5 | Square root %: |
m25=: ^&1r2 | " |
m26=: 2&%: | " |
m27=: ^&(%3) | Cube root |
m28=: ^&1r3 | " |
m29=: 3&%: | " |
m30=: (^1)&^ | Exponential ^ |
m31=: 1x1&^ | " |
m32=: 1x1&^. | Natural log ^. |
m33=: 10&^ | Antilog |
m34=: 10&^. | Base-10 log |
m35=: >:@<.@(10&^.)@(1&>.) | # of digits needed to represent integer y |
m36=: #@(10.^:_1)"0 | " |
m37=: >:@<.@( 2&^.)@(1&>.) | # of bits needed to represent integer y |
m38=: #@( 2.^:_1)"0 | " |
m39=: 0&{ | Head (first) {. |
m40=: _1&{ | Tail (last) {: |
m41=: 1&}. | Behead }. |
m42=: _1&}. | Curtail }: |
m43=: 0&< | Positive test |
m44=: 0&> | Negative test |
m45=: 0&>. | Max (0,y) |
m46=: 0&<. | Min (0,y) |
m47=: (0&=)@(2&|) | Even test |
m48=: (1&=)@(2&|) | Odd test |
m49=: _1&A. | Reverse |. |
m50=: (<0 _1)&C. | Interchange first and last items |
m51=: >.@(0.5&+) | Round |
m52=: ,~ $ 1: , ] $ 0: | Identity matrix of order y |
m53=: -.@(' '&E.) # ] | Remove multiple blanks |
m54=: BC=: i.@>: ! ] | Binomial coefficients of order y |
m55=: (0&,+,&0)^:([ `1:) | " (recursive) |
m56=: BCT=:i. !/ i. | BC table of orders to y-1 |
m57=: PAT=: |:@BCT | Pascal's triangle |
m58=: (0&,+,&0)^:(i.`1:) | " (recursive) |
m59=: IX=: a.&i. | Index in ASCII alphabet |
m60=: Lt=:(1&e.)@(e.&a.)@, | Literal test |
m61=: 1. | Sum over lists (last axis) +/"1 |
m62=: 1&, | Preface a row of 1's |
m63=: ,&1 | Append a row of 1's |
m64=: 1&,. | Preface a column of 1's |
m65=: ,.&1 | Append a column of 1's |
m66=: 1&,@$ $ , | Itemize (append leading 1 to shape) ,: |
m67=: sin=: 1&o. | Sin |
m68=: asin=: _1&o. | Arcsin |
m69=: cos=: 2&o. | Cos |
m70=: acos=: _2&o. | Arccos |
m71=: tan=: 3&o. | Tan |
m72=: atan=: _3&o. | Arctan |
m73=: sinh=: 5&o. | Sinh |
m74=: asinh=: _5&o. | Arcsinh |
m75=: cosh=: 6&o. | Cosh |
m76=: acosh=: _6&o. | Arccosh |
m77=: tanh=: 7&o. | Tanh |
m78=: atanh=: _7&o. | Arctanh |
Similarly, a conjunction in isolation with one of its arguments produces an adverb. For example:
a79=: each=: &.> a80=: inv=: ^:_1 ] boxes=: ;: 'I sing of Olaf' +--------------+ �I�sing�of�Olaf� +--------------+ |.boxes +--------------+ �Olaf�of�sing�I� +--------------+ |. each boxes +--------------+ �I�gnis�fo�falO� +--------------+ ^&3 inv 0 1 2 3 4 0 1 1.25992 1.44225 1.5874 ^&3 ^&3 inv 0 1 2 3 4 0 1 2 3 4
a79=: each=: &.> | Apply argument function to each box |
a80=: inv=: ^:_1 | Inverse |
a81=: ^:_ | Limit |
a82=: (D.1) " 0 | First derivative |
a83=: ;.1 | Partition |
a84=: !.0 | Exact comparison; e.g. = a84 |
a85=: "0 | Constant function on scalars |
a86=: "1 | Constant function on lists |
a87=: "_1 | Constant function on items |
a88=: "_ | Constant function on entire argument |
a89=: 0!: | Script; silent execute is se=: 0 a89 |
a90=: file=: 1!: | File; e.g. read=:1 file |